Reg. No. :		п					1
------------	--	---	--	--	--	--	---

Question Paper Code: 30936

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third Semester

Electronics and Communication Engineering

EC 2201 — ELECTRICAL ENGINEERING

(Regulation 2008)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the different methods of excitation of Generator?
- 2. Define back e.m.f of D.C motor.
- 3. What do you mean by step down transformer?
- 4. Draw the equivalent circuit of a transformer.
- 5. A three-phase 2-pole motor is to have a synchronous speed of 6000 rev/min. Calculate the frequency of the supply voltage.
- 6. A stator winding supplied from a three phase 60 Hz system is required to produce a magnetic flux rotating at 900 rev/min. Determine the number of poles.
- 7. What are V-curves?
- 8. Mention some of the applications of a stepper motor.
- 9. What are the various conventional and non-convention energy sources in India for power generation?
- 10. What are the advantages of EHVDC transmission system?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) A series motor has an armature resistance of $0.2\,\Omega$ and a series field resistance of $0.3\,\Omega$. It is connected to a 240 V supply and at a particular load runs at 24 rev/s when drawing 15A from the supply.
 - (i) Determine the generated e.m.f. at this load.
 - (ii) Calculate the speed of the motor when the load is changed such that the current is increased to 30A. Assume that this causes a doubling of the flux.

(b) A 250 V series motor draws a current of 40A. The armature resistance is $0.15\,\Omega$ and the field resistance is $0.05\,\Omega$. Determine the maximum efficiency of the motor shown below.

12. (a) Draw and explain the no-load phasor diagram and equivalent circuit of a single-phase transformer.

Or

- (b) Explain in detail the O.C. test and S.C. test on a single-phase transformer and what are the information's that can be obtained form the above tests?
- 13. (a) (i) Comment on the starting torque of cage type and slipring motor.

 Arrive at the condition for maximum starting torque. (10)
 - (ii) A 12 pole, 3 phase alternator driven at a speed of 500 rpm supplies power to a 8 pole, 3 phase induction motor, if the slip of the motor at full load is 3%, calculate the full load speed of the motor. (6)

Or

- (b) Discuss in detail the various methods by which speed control of induction motor is achieved. (16)
- 14. (a) Discuss the following:
 - (i) EMF method of finding regulation of an alternator. (8)
 - (ii) Reluctance motor construction and principle of operation. (8)

Or

- (b) Write short notes on:
 - (i) MMF method of determining regulation of an alternator. (8)
 - (ii) Hysteresis motor working principle. (8)
- 15. (a) (i) With the neat sketch explain the structure of general transmission and distribution system. (8)
 - (ii) A generating station has a maximum demand of 25 MW. Load factor is 60%. plant capacity factor is 50% and plant use factor is 72%. Find the reverse capacity and daily energy produced. (8)

Or

- (b) (i) Draw the schematic layout of EHVDC transmission system and explain. (8)
 - (ii) Explain briefly about insulators and cables. (8)